
Reference

Reference ii

COLLABORATORS

TITLE :

Reference

ACTION NAME DATE SIGNATURE

WRITTEN BY August 26, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Reference iii

Contents

1 Reference 1

1.1 Pure Basic Reference Manual . 1

1.2 editor . 2

1.3 Using the CLI Compiler . 3

1.4 general_rules . 5

1.5 variables . 6

1.6 For : Next . 7

1.7 gosub_return . 8

1.8 if_endif . 9

1.9 Repeat : Until . 10

1.10 Select : EndSelect . 10

1.11 While : Wend . 12

1.12 others . 12

1.13 deftype . 12

1.14 dim . 13

1.15 NewList . 14

1.16 structures . 14

1.17 global . 15

1.18 shared . 15

1.19 procedures . 16

1.20 includes . 17

1.21 debugger . 18

1.22 inlinedasm . 19

1.23 internalindex . 20

Reference 1 / 21

Chapter 1

Reference

1.1 Pure Basic Reference Manual

**
* *
* PureBasic Reference Manual V1.40 *
* *
* © 2000 - Fantaisie Software - *
* *
**

General Topics: External Libraries:

Using the Editor Amiga
Using the CLI compiler AmigaSprite
General Syntax Rules App
Variables and Types BitMap

@{ "" LINK k } Chunky
Basic Keywords: @{ "" LINK k } ClipBoard

@{ "" LINK k } Commodity
For: Next Drawing
Gosub: Return Font
If: EndIf File
Repeat: Until Gadget
Select: EndSelect Joypad
While: Wend Linked List
Others Menu

@{ "" LINK k } Misc
Structure Options: @{ "" LINK k } OS

@{ "" LINK k } Palette
DefType Picture
Dim Requester
NewList Screen
Structure: EndStructure Sort

@{ "" LINK k } Sound
Procedure Support: @{ "" LINK k } Sprite

@{ "" LINK k } String
Global TagList
Procedure: EndProcedure Timer
Shared ToolType

Reference 2 / 21

@{ "" LINK k } WbStartup
Various topics: @{ "" LINK k } Window

@{ "" LINK k }
’Include’ Functions Commands index:
Inlined 680x0 ASM
Debugger External Commands

@{ "" LINK k } Internal ←↩
Commands

1.2 editor

Introduction:

The PureBasic editor has been created especially for the PureBasic
programming language and has many special features especially
designed for it. It will become more and more powerful and will support
advanced editing like coloring syntax, word filling, online help...

Basic usage:

The PureBasic editor accept any standard ASCII characters, and load
and save the file in the ASCII format. It use all Amiga standard
short cut to edit the text:

Arrows Keys : Move the cursor in the four ways
Shift + Arrow Up : One page up
Shift + Arrow Down : One page down
Shift + Arrow Left : Start of the line
Shift + Arrow Right: End of the line

Shift + Enter : Insert a line above the current line
Shift + Del : Delete the right part of the line
Shift + Backspace: Delete the left part of the line

Help: Bring up the PureBasic manual online help (this document)

Now, the most important menus shortcuts:

AmigaRight + S: Save the current source code without any request
AmigaRight + Q: Quit the PureBasic
AmigaRight + L: Load a new source code

You can use Cut/Copy/Paste feature by dragging the mouse on a rectangular
area around the text you want to select. The text is copied to the
Amiga shared clipboard, so you can use this copied text in another
application.

This editor has an auto-indent fonction which always keep the cursor in
the currently indented block, providing an easy source code editing.

Special features:

Reference 3 / 21

There is a menu called ’Compiler’ and it’s by this way you could
control the PureBasic. Menu items:

* Compile/Run: Compile the actual source code and run it.

* Debugger: Switch which toggle ON/OFF the debugger

* Options:

- Output processor: 680x0/PowerPC. Change the format of the
generated executable. The PowerPC version is for WarpOS.

- Code optimizations: Turn on the optimizations while compiling
in the editor, to have exactly the same executable than the
final one. Of course the debugger must be turned off, else
this option is ignored. Better to turn it off while developping,
as it increase the compile time...

- Commented ASM output files: Generate a commented asm file when
you create a final executable. The file is located at
"PureBasic:Compilers/PureBasic.asm". You can modify this file
(optimize it) and recompile it with phxass. It slow down a
lot the executable generation so use it only when you need it.

- Disable CLI output: Don’t display the cli output window, useful
if your program print nothing to the cli.

- Create an icon: An icon will be added to the created executable
The icon is located at "PureBasic:Compilers/Default_Icon.info"
You can replace it by another one if you want

- Save: Save theses preferences for the actual file. Each file can
have their own preferences.

* CreateExecutable: Create a final executable. The optimizations are
of course turned on automatically. It use the options defined as
described above.

Other options like InsertFile, Print, Find, are classic one like
on any other editors...

1.3 Using the CLI Compiler

Using the CLI compiler:

Type "PureBasic" followed by the source filename to compile. PureBasic will
compile and launch the programme.

Compiler options:

FILE

String: This needs a source file name! This argument is needed or the compiler
will generate an error.

TO

Reference 4 / 21

String: If specified, you must add the destination path, and the filename, to
show where the executable must be created. Note: Only the executable is created
in this case. The programme is not started.

NR or NORESIDENT

Switch: If this is set, it will not load the AmigaOS resident file. By default
the compiler will load this file, thus increasing the compilation time.

PPC or POWERPC

Switch: If this is set, the compiler will generate an Amiga PowerPC executable
for WarpOS. For the present, the result will read as an error. It can be tested ←↩

.
Please record the asm file, and the generated code, then send us the result!
All data will be recorded and analysed in our continuous attempts to improve
this option. Thank you for your assistance. :)

NC or NOCOMMENT

Switch: If this is set, it will produce a non-commented asm output, which is
smaller and faster to assemble. This will decrease the compilation time.

PRI or PRIORITY

Numeric: A numeric value between -127 and +127, is required. It will determine
the priority of the compiler. Example: PureBasic PRI=10 .. will give almost ←↩

all
of the cpu time to the compiler.

CR or CREATERESIDENT

Switch: This will compile the programme, and create a resident file with all
structures and constants. The compiled file is located in "Ram:ResidentFile"
and "Ram:ResidentFile.struct"

STANDBY

Switch: If this is set, the compiler is put into "sleep mode" and waits for
on order through its message port. Please do not use it yet, as it is for use
with the forthcoming editor.

DB or DEBUGGER

Switch: If this is set, it will compile the programme with debugger support.
Shortly the debugger can be used to interrupt the programme. Please use it
carefully and run it step by step...

OPT or OPTIMIZATIONS

Switch: If this is set, it will enable maximum optimization, and generate fast
and small executables.

Examples:

Reference 5 / 21

PureBasic Sources:MypPog.pb DB PRI=10

PureBasic Sources:Example.pb TO Ram:Example.exe OPT PRI=10

1.4 general_rules

General Rules

PureBasic has established rules which never change.
These are:------

* Comments are marked by ; . All text entered after ; is ignored by the ←↩
compiler.

Example:

If a = 10; This is a comment to indicate something.

* All functions must be followed by (or else it will not be considered as a
function, (even for null parameter functions).

Example: WindowID() is a function.
WindowID is a variable.

* All constants are preceded by #

Example:

#Hello = 10 is a constant.
Hello = 10 is a variable.

* All labels must be followed by :

Example:

I_am_a_label:

* An expression is something which can be evaluated. An expression can mix any
variables, constants, or functions, of the same type.

Examples of valid expressions:

a+1+(12*3)
a+WindowHeight()+b/2+#MyConstant
a <> 12+2
b+2 >= c+3

* Any number of commands can be added to the same line by using the : option.

Example:

If OpenScreen(0,320,200,8,0) : PrintN("Ok") : Else : PrintN("Failed") : ←↩
EndIf

Reference 6 / 21

* Words used in this guide:

<variable> : a basic variable.
<expression>: an expression as explained above.
<constant> : a numeric constant.
<label> : a programme label.
<type> : any type, (standard or structured).

* In this guide, all topics are listed in alphabetical order to decrease any
search time.

1.5 variables

Variables declaration:

To declare a variable in PureBasic type its name, or the type you want this
variable to be. Variables do not need to be explicitly declared, as they can
be used as "variables on-the-fly."
The "DefType" keyword can be used to declare mass variables.

Example:

a.b ; Declare some variables.
c.l ;

c = a*d.w ; "d" is declared here within the expression!

To use a pointer, put * before the variable name. A pointer is a long variable
which stores an address. It is generally associated with a structured type.
So, you can access the structure via the pointer.

Example:

*MyScreen.Screen = OpenScreen(0,320,200,8,0)

mouseX = *MyScreen\MouseX

Basic types

PureBasic allows type variables. It now supports signed variables. Unsigned
variables can be used, but this can result in an error, as this option is
still in it’s early stages.

Types:

Byte: .b, take 1 byte in memory. Range: -128 to +127.
Word: .w, take 2 bytes in memory. Range: -32768 to +32767
Long: .l, take 4 bytes in memory. Range: -2147483648 to +2147483647

Unsigned Byte: .ub, take 1 byte in memory. Range: 0 to 255
Unsigned Word: .uw, take 2 bytes in memory. Range: 0 to 65535
Unsigned Long: .ul, take 4 bytes in memory. Range: 0 to 4294967295

Reference 7 / 21

String: .s, take the string length into memory.

Structured types

Build structured types, via the Structures option. More information can be
located in the "structures chapter."

1.6 For : Next

Syntax:

For <variable> = <expression1> To <expression2> [Step <constant>]

... Loop content

Next [<variable>]

Description:

The "For/Next" function is used to cause a loop within a programme within
given parameters. At each loop the <variable> is increased by a factor of 1,
(or of the "Step value" if a Step value is specified), when the <variable>
value equals the <expression2> loop stop.

Example 1:

For k=0 To 10
...

Next

In this example, the programme will loop 11, time (0 to 10), then quit.

Example 2:

a = 2
b = 3

For k=a+2 To b+7 Step 2
...

Next k

Here, the programme will loop 4 times before quitting, (k is increased by a
value of 2 at each loop, so the k value is: 4-6-8-10). The "k" after the
"Next" indicates that "Next" is ending the "For k" loop. If another variable ←↩

,
is used the compiler will generate an error. It is useful when nesting some
"For/Next" expressions.

Example 3:

For x=0 To 320
For y=0 To 200

Reference 8 / 21

Plot(x,y)
Next y

Next x

1.7 gosub_return

Syntax:

Gosub <label>

<label>:

... Sub routine code

Return

Description:

"Gosub" stands for "Go to sub routine." A label has to be specified after
"Gosub" then the programme will continue at the label position until it
encounters a "Return." When a return is reached, the programme is transferred
below the Gosub.

"Gosub" is very useful when building fast structured code.

Example:

a = 1
b = 2

Gosub ComplexOperation

PrintNum(a)
End

ComplexOperation:

a=b*2+a*3+(a+b)
a=a+a*a

Return

Syntax:

FakeReturn

Description:

When you want to jump from a sub routine (with the command ’Goto’)
to another part in the code outside of this sub routine, you need

Reference 9 / 21

to use a FakeReturn which simulate a return without do it really.
If you don’t use it, your program will crash.

This function should be useless because a well constructed program
don’t use Goto. But sometimes, for speed reason, it could help
a bit.

Example:

Main_Loop:
...

SubRoutine1:
...
If a = 10

FakeReturn
Goto Main_Loop

Endif

Return

1.8 if_endif

Syntax:

If <expression>
...

[Else]
...

EndIf

Description:

The "If" structure is used to achieve tests, and/or change the programmes
direction, if the test is true or false. The "Else" optional command is used
to execute a part of code, if the test is false.

Any number of "If" structures can be nested together.

Example 1:

If a=10
Nprint ("a=10")

Else
Nprint ("a<>10")

EndIf

Example 2:

If a=10 and b>=10 or c=20
If b=15

nprint("ok")
Else

Reference 10 / 21

nprint("ok2")
Endif

Else
nprint("test failure")

Endif

1.9 Repeat : Until

Syntax:

Repeat

... Programme ...

Until <expression>
[or Forever]

Description:

This function will loop until the <expression> becomes true. Any number can be
repeated. If an endless loop is needed then use the "Forever" keyword instead
of "Until."

Example:

a=0
Repeat

a=a+1
Until a>100

This will loop until "a" takes a value > to 100, (it will loop 101 times).

1.10 Select : EndSelect

Syntax:

Select <expression1>

Case <expression2>

...Code...

[Case <expression3>....]

...Code...

[Default]

...Code...

EndSelect

Reference 11 / 21

Description:

"Select" allows a quick choice. The programme will execute the <expression1>
and keep its value in memory. It will compare this value to all of the "Case
<expression> values," and if true it will execute the corresponding code and
quit the "Select" structure. If none of the "Case" values are true, then the
Default code, (if specified), will be executed.

Example:

a = 2

Select a

Case 1
PrintN("Case a = 1")

Case 2
PrintN("Case a = 2")

Case 20
PrintN("Case a = 20")

Default
PrintN("I don’t know")

End Select

Syntax:

FakeEndSelect

Description:

When you want to jump from a select part (with the command ’Goto’)
to another part in the code outside of the Select, you need
to use a FakeEndSelect which simulate an EndSelect without do it really.
If you don’t use it, your program will crash.

Example:

Main_Loop:
...
Select a

Case 10
...

Case 20
FakeEndSelect
Goto Main_Loop

Reference 12 / 21

EndSelect

1.11 While : Wend

Syntax:

While <expression>

... Programme ..

Wend

Description:

"Wend" will loop until the <expression> becomes false. A good point to keep in
mind with a "While" test is that if the first test is false, then the ←↩

programme
will never enter the loop and will skip this part. A "Repeat" loop is executed
at least once, (as the test is performed after each loop).

Example:

b = 0
a = 10
While a = 10

b = b+1
If b=10

a=11
Endif

Wend

This programme loops until the "a" value is <> 10. A change here when b=10,
the programme will loop 10 time.

1.12 others

A list of other commands:

Goto

Goto <label>

This command is used to transfer the programme directly to the labels position ←↩
.

Be cautious when using this function, as incorrect use could cause a programme
to crash...

1.13 deftype

Reference 13 / 21

Syntax:

Deftype.<type> [<variable>, <variable>,...]

Description:

If no <variables> are specified, "DefType" is used to change the "Default type ←↩
"

for future untyped variables.

Example:

DefType.l

a = b+c

a, b and c will be signed long typed (.l) as no type is specified.

If variables are specified, "DefType" only declares these variables as
"defined type" and will not change the default type.

Example:

DefType.b a,b,c,d

a,b,c,d will be signed byte typed (.b)

1.14 dim

Syntax:

Dim name.<type>(<expression>)

Description:

"Dim" is used to "size" the new arrays. An array in PureBasic can be of any
types, including structured, and user defined types.
Once an array is "dim" it cannot change it’s time and another array cannot be
classed as "dim" with the same name.

Example:

Dim MyArray.l(41)

MyArray(0) = 1
MyArray(1) = 2

Reference 14 / 21

1.15 NewList

Syntax:

NewList name.<type>()

Description:

"NewList" allows managed dynamic linked lists in PureBasic. Each element of
the list is allocated dynamically. There are no element limits, so there can
be as many as needed. A list can have any standard or structured type.

To view all commands used to manage lists, please click here

Example:

NewList mylist.l()

AddElem(mylist())

mylist() = 10

1.16 structures

Syntax:

Structure <name of structure>

... Structure content

EndStructure

Description:

"Structure" is useful to define user type, and access some OS memory areas.
Structures can be used to enable faster and easier handling of big data files.
Structures are accessed with the "\" option.
Structures can be nested.

Example:

Structure Info
Name.s
ForName.s
Age.l
Birthday.l

EndStructure

Dim myfriends.Info(100)

myfriends(0)\Name = "Andersson"

Reference 15 / 21

myfriends(0)\Forname = "Richard"
...

There is a possible way to share a memory emplacement inside structure. This is
know as ’Union’ in the C/C++ langage. PureBasic supports fully the unions to ←↩

provide
a complete support of the AmigaOS but it’s not very recommended to use them. It’ ←↩

s
complex and could generate many doubtful errors. There are the ’StructureUnion’
and ’EndStructureUnion’ keywords.

Example:

Structure.person

StructureUnion

*FirstName.l ; These both names are exactly the same. They

*AlternateName.l ; point to the same data, only the name is
EndStructureUnion ; different

EndStructure

1.17 global

Syntax:

Global <variable> [,<variable>,...]

Description:

"Global" allows the variables to be used as Global, ie: they can be accessed
inside a procedure.

Example:

Global a.l, b.b, c, d

1.18 shared

Syntax:

Shared <variable> [,<variable>,...]

Description:

"Shared" allows a variable to share, or to be accessed, within a procedure.

Reference 16 / 21

Example:

a.l = 10

Procedure myproc()
Shared a

a = 20

EndProcedure

myproc()

PrintN(Str(a)) ; Will print 20, as the varaible has been shared.

1.19 procedures

Syntax:

Procedure[.<type>] name(<variable1>[,<variable2>,...])

... Procedure code

[ProcedureReturn value]

EndProcedure

Description:

A "Procedure" is a part of code independent from the main code which can
have any parameters and it’s own variables. In PureBasic, a recurrence is
fully supported for the "Procedures" and any procedure can call it itself.
To access main code variables, they have to be shared them by using
"Shared" or "Global" keywords.

A procedure can return a result if necessary. You have to set the type
after ’Procedure’ and use the ’ProcedureReturn’ keyword at any moment
inside the Procedure.

Example:

Procedure.l Maximum(nb1.l, nb2.l)

If nb1>nb2
Result = nb1

Else
Result = nb2

Endif

ProcedureReturn Result

EndProcedure

Reference 17 / 21

Result.l = Maximum(15,30)

PrintNumberN(Result)

End

1.20 includes

Syntax:

IncludeFile "filename"
XIncludeFile "filename"

Description:

"IncludeFile" will include any named source file, at the current place in the
code. "XIncludeFile" is exactly the same except it avoids having to include
the same file many times.

Example:

XInclude "Sources:myfile.pb" ; This will be inserted.
XInclude "Sources:myfile.pb" ; This will be ignored along with all ←↩

subsequent
calls..

Syntax:

IncludeBinary "filename"

Description:

"IncludeBinary" will include the named file at the current place in the
code.

Example:

IncludeBinary "Sources:myfile.data"

Syntax:

IncludePath "path"

Description:

"IncludePath" will specify a default path for all files included after the ←↩
call of

this command. This can be very handy when you include many files which are in ←↩
the

same directory:

Reference 18 / 21

Example:

IncludePath "Sources:Data/"

IncludeFile "Sprite.pb"
XIncludeFile "Music.pb"
...

1.21 debugger

The PureBasic Debugger

The debugger is an external program which can control the execution of a
programme. The provided debugger is limited and has few functions. ←↩

Nevertheless
it is enough to debug a programme correctly. It will be regulary updated and
bettered. If anyone wants to do their own debug utility, please contact us. ←↩

The
debugger is 100% OS friendly and does not use interrupts or trap vectors.

A programme’s execution can be stopped, and an analysis made to locate any
faults! This can be very useful in case a programme falls into an endless loop ←↩

.

Functions:

Stop

This will halt the execution then display the current code position.

Cont

This will continue a previously stopped programme.

Step

This button allows code to be inserted step by step, ie: line after line. It ←↩
is

very handy to locate any faults.

Trace

This button allows the user to read the code as the programme lines are
displayed.

Exit

Exit: This quits the debugger; the compiler; and any programme in case of any
problems or if an "endless loop" cannot be stopped in any other way.

The debugger’s keywords in PureBasic:

CallDebugger:

Reference 19 / 21

This invokes the "debugger" and freezes the programme immediately.

Example:

If a=10
CallDebugger ; The debugger will be invoked.

Else
Ok=1

Endif

1.22 inlinedasm

PureBasic allows you to include any 680x0 assembler commands
directly in the source code, as if it was a real assembler. And
it gives you even more: you can use directly any variables or
pointers in the assembler keywords, you can put any ASM commands
on the same line, ... All the assembler keywords are supported
from 68000 to 68060. Click here to have the full list
of legal ASM keyword and a quick description of them (extract of
the PhxAss guide). Read the PhxAss guide to get more informations
about their use...

You have several rules to closely follow if you want to include
asm in a Basic code:

+ You must turn off the debugger when using the inlined ASM.

+ The used variables or pointers must be declared before to
use them in an assembler keyword.

+ When you reference a label, you must put the letter ’p’ before
the name. This is because PureBasic add a ’p’ before a BASIC
label to avoid conflit with internal labels.

Example:

LEA.l pMyLabel(pc),a0
...
MyLabel:

+ The errors in an asm part is not reported by PureBasic but by
PhxAss. Just check your code if a such error happen.

+ The registers a2,a3,a4 must be always preserved. All others
are free to use.

Example:

Inlined ASM example

Reference 20 / 21

1.23 internalindex

**
* *
* PureBasic Internal Commands Index *
* *
* © 2000 - Fantaisie Software - *
* *
**

Commands Index: Area:

.b Variables

.l Variables

.s Variables

.ub Variables

.ul Variables

.uw Variables

.w Variables
Byte Variables
CallDebugger Debugger
Case Select: EndSelect
Default Select: EndSelect
DefType DefType
Dim Dim
Else If: Endif
EndIf If: Endif
EndProcedure Procedures
EndSelect Select: EndSelect
EndStructure Structures
EndStructureUnion Structures
FakeEndSelect Select: EndSelect
FakeReturn Gosub: Return
For For: Next
Forever Repeat: Until
Global Variables
Gosub Gosub: Return
Goto Others
If If: Endif
IncludeBinary Includes
IncludeFile Includes
IncludePath Includes
Long Variables
NewList LinkedLists
Next For: Next
Procedure Procedures
ProcedureReturn Procedures
Repeat Repeat: Until
Return Gosub: Return
Select Select: EndSelect
Shared Variables
Step For: Next
String Variables
Structure Structures
StructureUnion Structures

Reference 21 / 21

To For: Next
Until Repeat: Until
Wend While: Wend
While While: Wend
Word Variables
XIncludeFile Includes

	Reference
	Pure Basic Reference Manual
	editor
	Using the CLI Compiler
	general_rules
	variables
	For : Next
	gosub_return
	if_endif
	Repeat : Until
	Select : EndSelect
	While : Wend
	others
	deftype
	dim
	NewList
	structures
	global
	shared
	procedures
	includes
	debugger
	inlinedasm
	internalindex

